

Safe Application of Nanoremediation

Andy Gillett, Judith Nathanail & Paul Nathanail, LQM

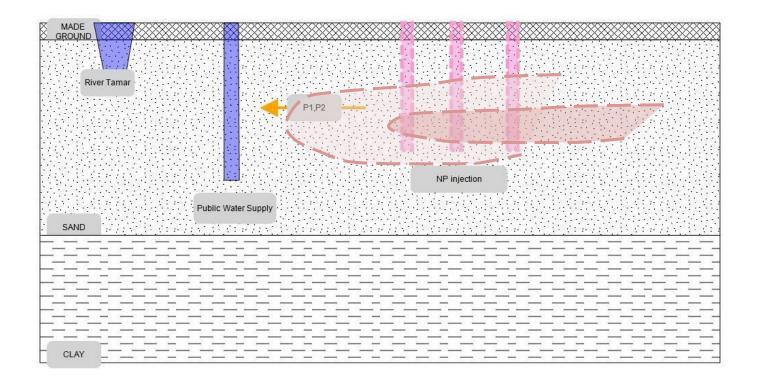
NanoRem Final Conference Nanoremediation for Soil and Groundwater Clean-up - Possibilities and Future Trends

Frankfurt am Main, 21st November 2016

1

Structure

- NanoTechnology for contaminated land
 Remediation
- Risk assessment
- Conceptual site models
- Toxicity
- Fate
- Transport
- Risk Screening Model
- Possibilities & Future Trends



Safe Application of Nanoremediation

2

NanoTechnology for contaminated land **Rem**ediation

Safe Application of Nanoremediation

The stars of the show

Nanoparticles	Deployed at: Pilot Site / LSF /LSC
nZVI (Nanofer25S)	Spolchemie I, Czech Republic
Milled iron nanoparticles	Zurzach, Switzerland
Nano Goethite	Spolchemie II, Czech Republic
Carbo-Iron	Balassagyarmat, Hungary
	Neot Hovav, Israel
	Nitrastur, Spain
Colloidal Fe-zeolites –	Not deployed
Fe (VI) salts (ferrates)	Not deployed
Non-Fe metals & alloys (Al & Mg)	Not deployed

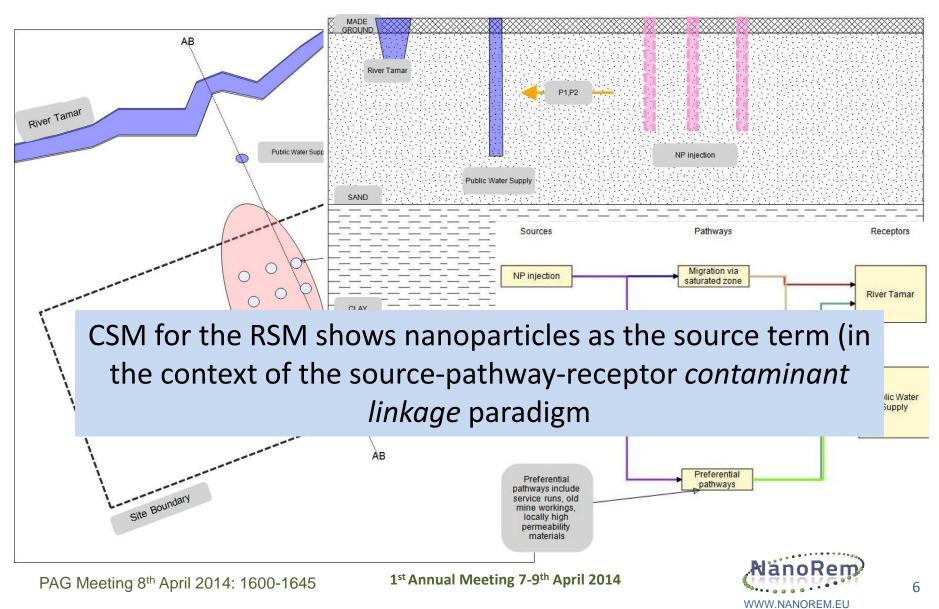
Safe Application of Nanoremediation

NanoRem Final Conference, 21st November 2016

4

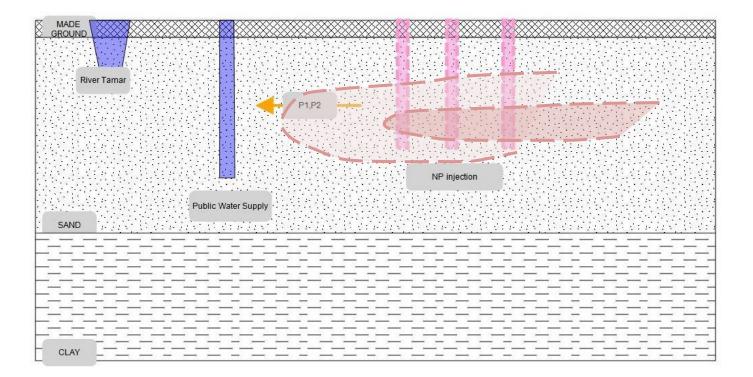
Risk assessment

- used where outcome of an activity is uncertain.
- estimate the level and then evaluate significance of the risk posed by given activity
- includes consideration of exposure (based on fate and transport) and the toxicity of the substance.
- establish the legal context
 - define standard to achieve (Target Concentration)
 - location standard must be achieved (Compliance Point)


Safe Application of Nanoremediation

5

Visualisation of CSM



Land Quality Management Ltd

CSM – Cross Section

Toxicity

EC ₅₀ >100 mg/L	EC ₅₀ <100 m	0 <100 mg/L ND: not determined							
	P.subcapitata	Chlamydomo nas sp.	D. magna	L. variegatus	V. fischeri	E. coli	E. fetida	L.multiflorum	R. sativus
	48 h growth OECD 201	48 h photo- synthesis efficiency	48 h immo- bilization OECD 202	96 h mortality	15 min lumi- nescence ISO 11348-3	6 h growth 24 h viability	48 h mortality OECD 207	6 day root elongation OECD 208	6 day root elongation OECD 208
NanoFer STAR (NanoIron)									
Nano-magnetite (UPOL)									
Milled Fe particles (UVR-FIA)	ND	ND	ND				ND		
Nano-goethite (HMGU)									
Fe Zeolite (UFZ)									
Carbo-Iron (UFZ)									
Bio-nanomagnetite (UMAN)	ND	ND	ND	ND	ND	ND		ND	ND

EC₅₀ is defined as an effect concentration at which an effect of 50% is observed

Safe Application of Nanoremediation

8

und Biotechnologie e.V.

Fate

Nanoparticle	Aspects of fate relevant to risk assessment studied	Findings
Nanofer 25S	Particle oxidation and Fe speciation in groundwater from Spolchemie I,	Fast degradation in presence of oxygen, likely to react with electron acceptors other than contaminant.
Nanofer STAR (activated)	Long term anaerobic corrosion and Fe speciation (Spolchemie I, contaminated with chlorinated hydro-carbons)	Transformation products are iron minerals commonly found in sediment and soils i.e. Fe oxides, Fe hydroxides and Fe carbonates.
Milled ZVI	None (fate experiments addressed: Reactivity)	N/A
Carbo Iron (field relevant conditions)	Contaminant sorption after long term aging	Sorption ability not expected to be significantly reduced.
Fe zeolites (field relevant conditions)	Alteration of elemental composition, BET specific surface area, catalytic activity and MTBE adsorption after long-term aging in presence of NOM	Changes in zeolite composition are mainly due to uptake of divalent cations from the hard water.
Gesellschaft für Chemische Tec		

NanoRem Final Conference, 21st November 2016

WWW.NANOREM.EU

Fate

Nanoparticle	Aspects of fate relevant to risk assessment studied	Findings
BNM/ Pd- BNM	None (fate experiments addressed: Removal of Cr (VI) and Reactivity)	N/A
Nano Goethite	Changes in Fe content & speciation of particles exposed for 1 year to BTEX (Spolchemie II) NB Mobility unlikely, since Nano-Goethite loses its stabilizing humic acid coating during transport.	Fe _{tot} content decreased; Mostly Fe(III) measured Fe-speciation showed nG resistant to chemical changes after 1 year. Mineral composition constant, but size & crystallinity of nano-needle increased.
Mg/Al particles	None (poor long term reactivity, no further fate experiments reported.	N/A

Safe Application of Nanoremediation

Fate

- In general, NPs increase in size, decrease in reactivity and undergo chemical transformations to minerals common in the subsurface
- Mobility enhancing coatings may be lost
- However, there is insufficient detail to formally include changes in the nature of the particles as part of a risk model.
- The model therefore (conservatively) assumes that particles maintain their reactivity/toxicity.

Table 3: Nanoparticle Transport Distances **Recorded from Large Containers and Flume**

Contain er	Particle	Maximum distance (m)	Notes
LSF	ZVI - NANOFER STAR	1.5	Most particles were transported more than 0.3m; a small amount reached 1.44m
LSC	Iron-oxides Goethite	2.5	1.7 m Transport during injection; no furthertransport detected after injection at higherlevels; however maximum 2.6m further transportwas observed after injection at base level
LSF	Carbo Iron	0.8	Particle distribution was not uniform Solid particles came out of the outlets, 3.5m from injection point but analysis shows Fe(0) content greatly diminished
Gesellschaft für Chemische Technik			onference, 21 st November 2016

NanoRem Final Conference, 21st November 2016

Transport

- The issue is not too much transport but too little
- Efforts focus on increasing transport not controlling it
- NB Dissolved phase plumes:
 - Hydrocarbons ca 100 400m
 - Chlorinated solvents ca 1-2km
 - Anions ca 20km?

Land Quality Management - LQM

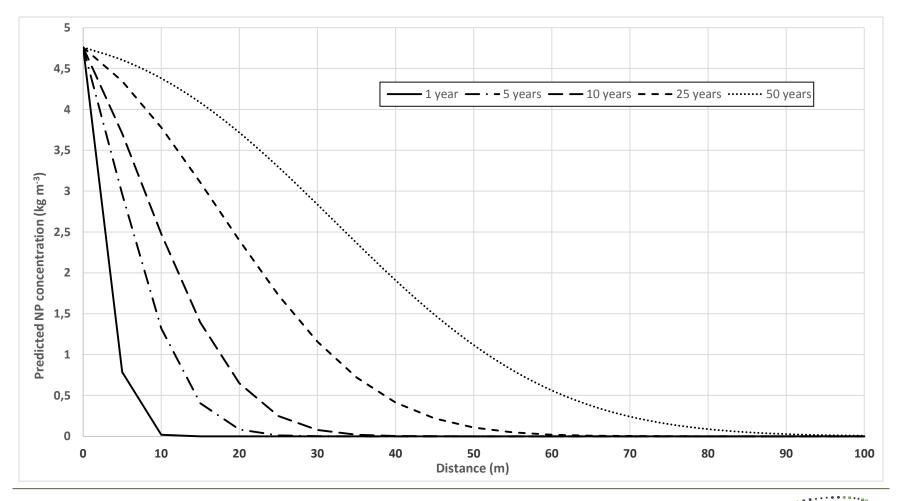
Qualitative Pre Deployment Risk Assessment Protocol (Nathanail et al 2016)

- Its probably not a risk if:
 - There are no receptors of concern (so why remediate?)
 - Hydraulic containment is already in place.
 - There is already a down gradient PRB or other attenuation/mitigation mechanism in place.
 - Chemicals injected for competitor technologies (ISCO/ISCR)would travel further.
 - Injection point >100m from receptor & no karstic flow.
 - contaminant plume extends down gradient >100m.
 - Injection pressure is less than fracking pressure.
 - Tracer tests show surface water unreached/ no daylighting
 - Facilitated transport, inc. colloid transport, insignificant (low TDS).

Risk Screening Model (RSM)

- The aim of the RSM is to evaluate the risks to identified receptors from renegade *NanoRem nanoparticles* applied to a site for groundwater remediation.
- Based on Environment Agency Remedial Targets Methodology MS Excel[™] spreadsheets
- Key input is k_{att} & k_{det} coefficients

Land Quality Management - LQM Risk Screening Model (RSM) for applying the NanoRem nanoparticles to groundwater remediation



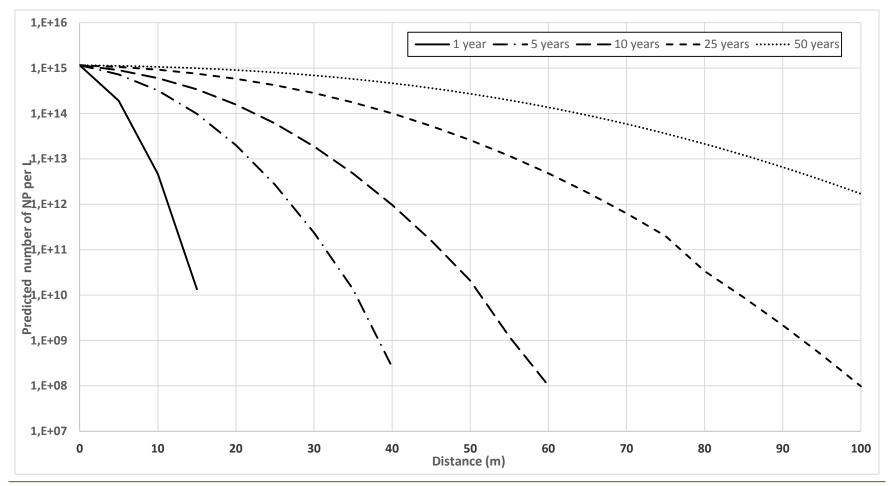
Safe Application of Nanoremediation

NanoRem 16

Land Quality Management - LQM

Travel distances over time

Chemische Techni

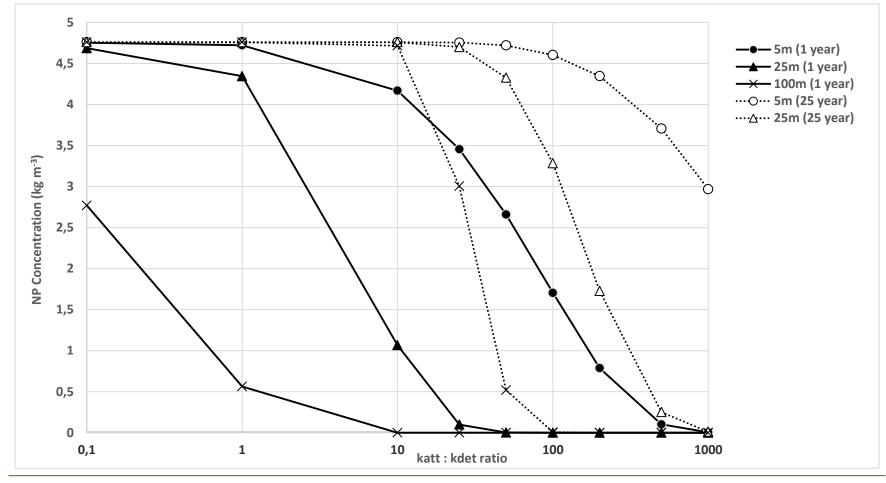

und Biotechnologie e.V.

Safe Application of Nanoremediation

WWW.NANOREM.EU

17

NP Attenuation over time



Safe Application of Nanoremediation

Land Quality Management - LQM

K_{att}/k_{det}

Safe Application of Nanoremediation

Possibilities & Future Trends

- The RSM will help practitioners provide to regulators site specific evidence of the (extremely low) risks of deploying NPs for groundwater remediation
- The RSM and the earlier qualitiative protocol demonstrate that in a wide range of conditions NanoRem particles are extremely unlikely to escape polluted groundwater
- The UK government requested moratorium on deploying NPs for environmental remediation

Exercise And Andrew State Sta

Thank you for your attention

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Paul Nathanail Land Quality Management Ltd, University of Nottingham Innovation Park Triumph Road, Nottingham NG7 2TU. UK

paul@lqm.co.uk

website: www.lqm.co.uk

Safe Application of Nanoremediation

