

anoRem

K. Mackenzie, S. Bleyl, F.-D. Kopinke, J. Bruns

Hydrophobicity Neg. surface charge Iron-specific contaminant spectrum Hydrogen generation

Particle Description

AC + Fe(III) salt + reduction

Fe(0) + Activated Carbon (AC) as true composite

No leaching of nanoparticles! Built-in Fe! 25...30 wt-% Fe⁰, 50...60 wt-% C, Rest: Fe oxides Particle size $\approx 0.8...1.3 \ \mu\text{m}$ Effective particle density $\approx 1.7 \ \text{g/cm}^3$ Porous, sorption active particles BET $\approx 600 \ \text{m}^2/\text{g}$ Sorption coefficient for PCE $\approx 10000...30000 \ \text{L/kg}$ Hydrophobic surface: easy to wet by solvents

Improvement of nanoiron performance?

Particles as in-situ reagent

treatment zone

Requirements:

- → sufficient retention time in treatment zone
- → broad zone means sufficient mobility
- \rightarrow irreversible attachment
- \rightarrow no blockage

- \rightarrow selective source attack
- → placement of particles near source
- \rightarrow sufficient Fe mass

First Field Site

20 kg Carbo-Iron (10 g/l, 2 g/l CMC) 120 kg Carbo-Iron (15 g/l, 1,5 g/l CMC)

Second Field Site

Balassagyarmat, Hungary

 $c_{PCE} > 20 \text{ ppm}$ 12...14 m below ground $\varepsilon = 0.4$ $K_{f} = 5 \cdot 10^{-3} \text{ m/s}$

→ Plume treatment

Measurements:

- COCs, pH, O₂, redox...
- microbiol. community
- isotope fractionation...

Challenge

- Place 20 kg Carbo-Iron within a radius of 0.5 m around source
- high suspension concentration
- Avoid blockage, daylighting but also particle "escape" from the 0.5-m-zone

high suspension stability but fast deposition needed

Flume experiment at Uni Stuttgart (VEGAS)

Decision aid by column experiments

20 kg Carbo-Iron with 20 g/L = 1 m³ Injection suspension

RCH – UFZ

Column experiment to optimize particle placement

How to control Carbo-Iron mobility and particle mass loading?

Influence of suspension stabilizer on sedimentation profile and colloid mobility

EARCH – UFZ

WWW.NANOREM.EL

Suspension composition determines particle mobility

Testing of reactivity - source

Emplaced PCE droplets

2 mm

Sediment: Dorsilit Dyed Organic phase: PCE fluid: medium hard water Injection flow: 10 m/d c_{particle}: 20 g L⁻¹ *с*_{смс}: 1 g L⁻¹

Visualization by digital microscope

Page 14

Testing of reactivity - source

Initial Carbo-Iron injection phase

organic phase covered by particles

Remaining particles on organic surfaces after flushing with de-ionized water

Outcome so far:

- non-selective particle deposition on contminant under injection conditions
- Decrease of ionic strength usually leads to remobilisation of particles from grain surface, Carbo-Iron remains at organics interphase

To do: Quantification of product formation

hank you for your attention!

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.