

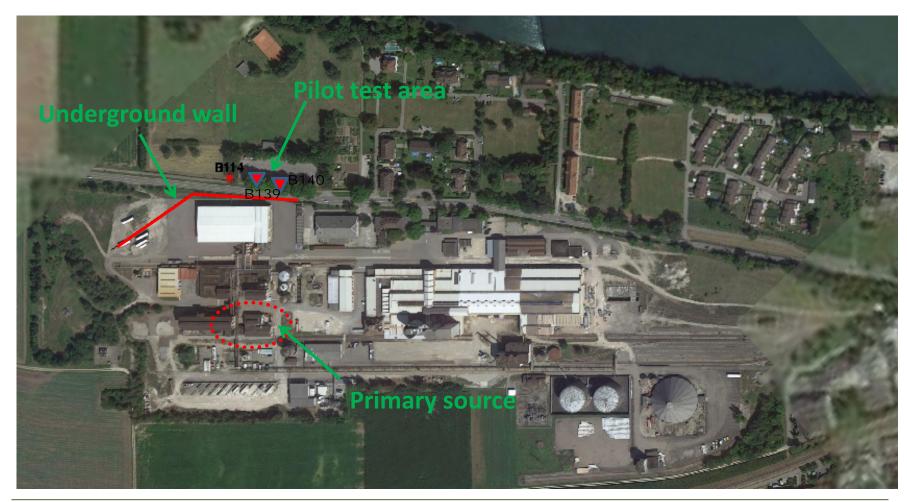
Demonstrating Nanoremediation in the Field - The NanoRem Test Sites -

Juergen Braun (VEGAS, University of Stuttgart, DE), Randi Bitsch (Solvay AG, CH), Matthias Kraatz (Golder Associates GmbH, DE), Vitor Correia (Geoplano-Consultores, PT), Nerea Otaegi (Tecnalia Research & Innovation,, ES), Noam Weisbrod (Ben Gurion University of the Negev, IL), Petr Kvapil (AQUATEST a.s., CZ)

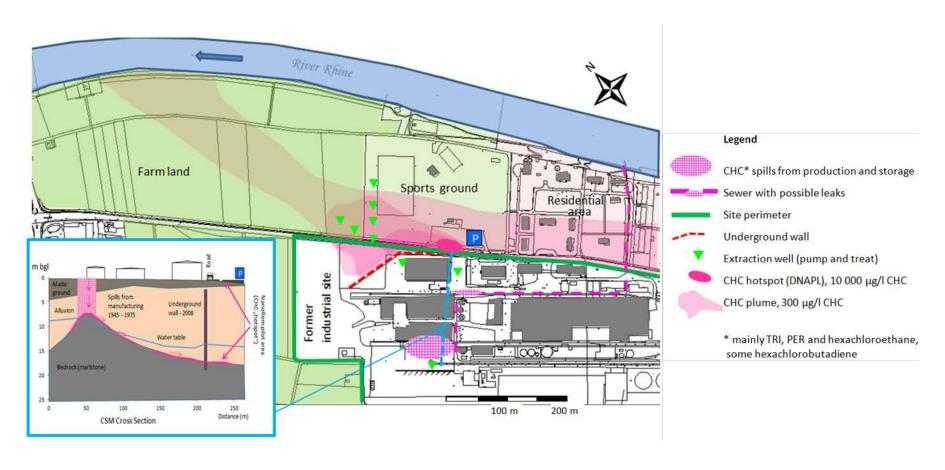
Objectives of NanoRem Field Sites

- Testing of emerging NP applications.
- Optimisation of NPs and tools.
- Determination of degradation products at field conditions.
- Application of appropriate injection technologies for varying hydrogeology.
- Alleviation of the current lack of validated field scale performance data for end-users and regulators.

NanoRem Pilot Sites


Site	Country	Site Primary	Target	NP-Type	Reaction Principle	Aquifer
		Investigator	Cont.	(Producer)		
		(SPI)				
Zurzach	СН	Solvay	СНС	nZVI, milled	Reduction/	Layered
		(Schweiz) AG		(UVR-FIA)	Sorption	alluvial
Spolchemie 1	CZ	Aquatest	СНС	nZVI, stabilized	Reduction	alluvial
				(NANOIRON)		
Spolchemie 2	CZ	Aquatest	BTEX	Iron-Oxide	Oxidation/ microb.	alluvial
				(HMGU / UDE)	Enhancement	
Barreiro	РО	GeoPlano	НМ	nZVI, tbd	Immobilisation	alluvial
				(NANOIRON)		
Bizkaia	ES	Tecnalia	НМ	nZVI, tbd	Reduction/	alluvial
				(NANOIRON)	Immobilisation	
Besor-Secher	IS	Negev, BGU	СНС	Carbo-Iron®	Reduction	fractured
				(SciDre)		
Balassagyarmat	Н	Golder	CHC	Carbo-Iron®	Reduction	coarse alpine
				(SciDre)		

Zurzach, Switzerland



Zurzach, Conceptual Site Model

Treatment of the secondary source with FerMEG 12 (milled nZVI). Five new injection well and three monitoring wells installed within the NanoRem test area

Zurzach, Status

Conceptual Site Model Available

Permit Available

Monitoring Strategy Completed

1

Monitoring Installed

1

Injection of NP

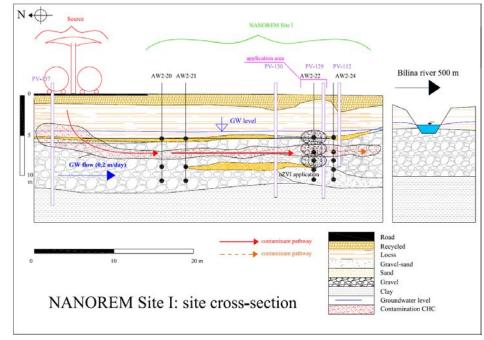
(✓)

Longterm Performance Monitoring)

X

Report / CL:AIRE-NanoRem Bulletin

Spolchemie DNAPL, CZ



Spolchemie DNAPL Conceptual Site Model

- Area 10 x 20-30 m, Groundwater table 4-5 m below surface
- Aquifer, quarternary, sand, gravel, 6-7 m thickness
- Source: production, storage and distribution of DNAPL (PCE, PCM);
 bounded by Permeable Reactive Barrier
- Groundwater flow velocity ca 0,2 m/d (behind the wall)
- Outside PRB, DNAPL is far from the site
- Dissolved plume, spreading by the groundwater
- Residual phase unlikely, no pools
- Back diffusion unlikely
- Bílina river is the final receptor

Spolchemie DNAPL, Status

•	Conce	ptual	Site	Model	Available
---	-------	-------	------	-------	-----------

V

Permit Available

1

Monitoring Strategy Completed

√

Monitoring Installed

 \checkmark

1st Injection of NP

1

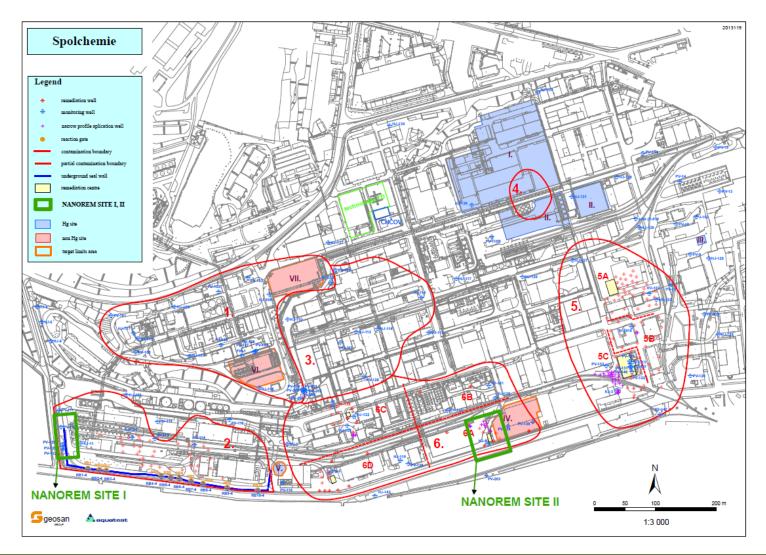
2nd Injection of NP

X

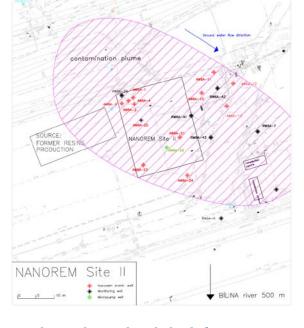
Longterm Performance Monitoring

√

Report / CL:AIRE-NanoRem Bulletin



Spolchemie LNAPL, CZ



Spolchemie LNAPL Conceptual Site Model

- Area 20 x 20-30m
- Groundwater table 4-5 m below surface
- Aquifer, quarternary, sand, gravel
- Groundwater flow velocity ca 0,9 m/d
- 6-7 m thickness
- main contaminants BTEX
- former production of synthetic resins (burned out) and storage tanks in northwest from the site

 Free phase, residual phase and dissolved contamination in highly mobile layer of aquifer

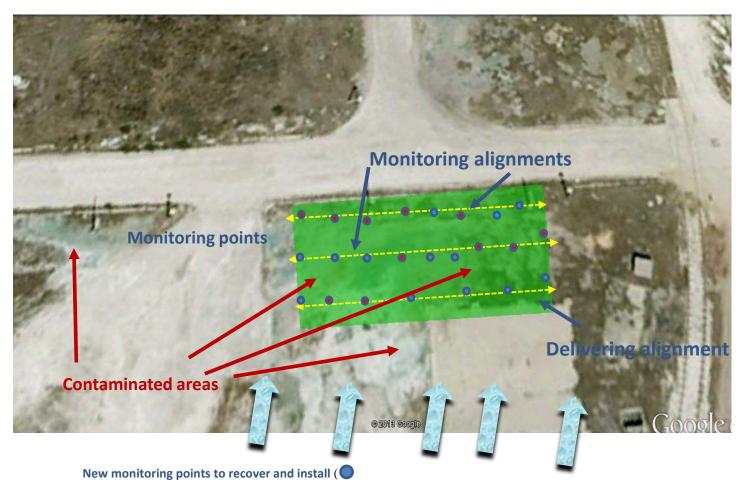
Spolchemie LNAPL, Status

	Pilot Area Selected	V
•	Conceptual Site Model Available	\checkmark
•	Permit Available	\checkmark

- Monitoring Strategy Completed
- Monitoring Installed
- 1st Injection of NP
- 2nd Injection of NP
- Longterm Performance Monitoring
- Report / CL:AIRE-NanoRem Bulletin

Barreiro, Portugal

- Old 340ha industrial area which is now being dismantled
- The owner is a semi public institution
- Different types of contaminants
- Study area is contaminated by heavy metal, sulphates, nitrates
- Semi confined aquifer
- Sedimentary formations, composed by layers of sands, silts and clays



Barreiro – Remediation Concept

- Remediation by creating an active barrier composed by several piezometer where the NP's will be delivered
- Total quantity
 will be delivered
 into the different
 upstream Pz
 pipes (manually
 or automatically)

Barreiro, Status

Conceptual Site Model Available

Permit Available

 \checkmark

Monitoring Strategy Completed

 \mathbf{X}/\checkmark

Monitoring Installed

X/**√**

Injection of NP

X

Longterm Performance Monitoring

X

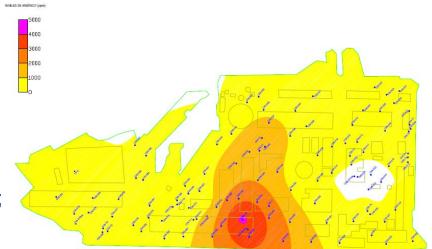
Report / CL:AIRE-NanoRem Bulletin

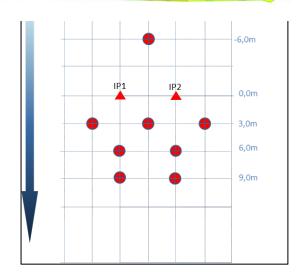
X

Nitrastur, Spain

SITE INVESTIGATIONS PERFORMED TO DATE:

- Date unknown: 14 boreholes (P1- P14), all fitted (currently 7 operative).
- 2009 DEC: 109 trial pits, 20 boreholes (S01 S20), all fitted (currently 12 operative), 316 soil samples, 20 groundwater samples, analysis: heavy metals and TPHs.
- 2011 AITEMIN: 1 borehole (N-1), pumping tests, hydrogeological model outlined.
- 2013 UNIOVI: currently using as demo site for other R&D project (Life+ 2012-2015), portable XRF screening, 5 soil samples, 12 groundwater samples from previous piezometers and 2 surface water samples → cooperation opportunity?
- → Good overall characterization (6 SP/1Ha)


Nitrastur – Remediation Concept



ARSENIC IN SITU NANOREMEDIATION IN GROUNDWATER

Goethite (from NanoIron or HMGU/UDE) and n**ZVI** (Nanofer Star) tested in laboratory by TULib:

- Concentration of solved arsenic decreases significantly in the treatments using both goethites;
- Concentration of dissolved As is also reduced when reacting with nZVI (NanoferStar).
 → more reactive than goethites, mobility issues still challenging
 - Pilot test area: 12m x 15m, in flat, cleared area.
 Former NH3 zone.
 - N⁰ monitoring wells: 8, N⁰ injection wells: 2 6 m spaced.
 - 3 m spaced* (1 upgradient, 7 downgradient). Down 1m into Shale (7 to 8 mbgl).
 - Injection in open boreholes

Conceptual Site Model AvailablePermit Available

Monitoring Strategy Completed

Monitoring Installed

Injection of NP

Longterm Performance Monitoring

Report / CL:AIRE-NanoRem Bulletin

Balassagyarmat, Hungary

Balassagyarmat Conceptual Site Model

- 2005 site evaluation updated based on reference date measurement in 12/2013
- Determination of current hydraulic and hydrochemical site conditions: 9 wells suitable for sampling and hydraulics measurements
- Groundwater sampling and data logging of physicochemical parameters (pH, temperature, conductivity, RedOx, Oxigen). Chemical characterization of groundwater at all wells (analysis of 66 organic and inorganic parameters each)
- Results: In general the in 2005 described hydraulic situation with a groundwater flow in NNW direction was confirmed, the current contamination spreading was outlined.
- Due to geology, hydrogeology and hydro-/geochemistry the Balassagyarmat site has been evaluated as useable for nano particle application

Balassagyarmat, Status

Pilot Area Selected

Conceptual Site Model Available

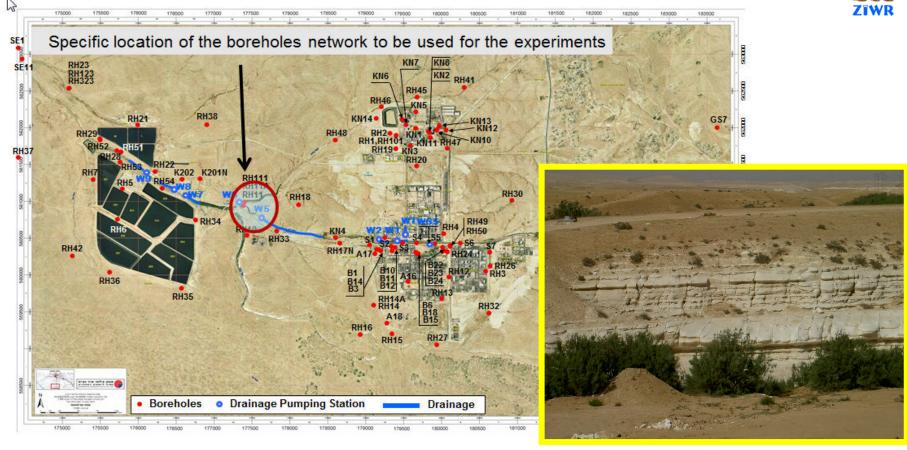
Permit Available

DL 10.1 Report on Site Selection

Monitoring Strategy Completed

Injection of NP

Longterm Performance Monitoring


Report / CL:AIRE-NanoRem Bulletin

Besor-Secher, Israel

Neot Hovav size is 23.7 km², of which 8km² are used and the rest is designated for future industrial factories.

Currently there are 21 factories and industrial facilities on site.

Annual precipitation ~180 mm

Besor-Secher Conceptual Site Model

- Hydraulically active network of boreholes penetrating the fractured chalk aquifer.
- Tracer test done at the site 11 years ago showed very high recoveries.
- Previous work done in this pilot site can give us good estimation about hydraulic properties conceptual and numerical model available for the specific site.
- Focus in NanoRem is mainly on particles transport mechanism and potential utilizing the unique fractured hydraulically connected system at the site, on which many hydrological parameters are known.

Besor-Secher, Status

Conceptual Site Model Available

√

Permit Available

Monitoring Strategy Completed

Monitoring Installed

√

Injection of NP

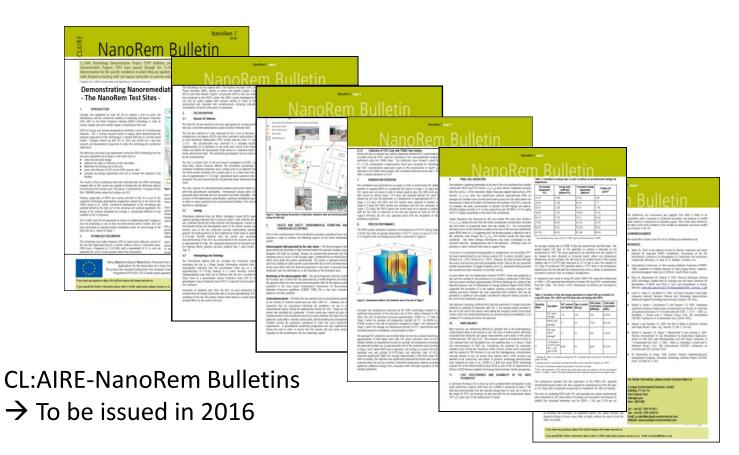
1

Longterm Performance Monitoring

n.a.

Report / CL:AIRE-NanoRem Bulletin

X



More Information on NanoRem Sites

AQUACONSOIL Poster Session

→ Detailled info on each site

Thank you for your attention!

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

